
Empowering Analog Integrated Circuit Design
through Large Language Models and Reinforcement

Learning

by

Irene Terpstra

B.S., Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© Irene Terpstra, MMXXIV. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Irene Terpstra
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Xin Zhang
Research Staff Member and Manager, IBM T.J. Watson Research
Center
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair
Master of Engineering Thesis Committee

2

Empowering Analog Integrated Circuit Design through Large

Language Models and Reinforcement Learning

by

Irene Terpstra

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Analog Integrated Circuit design consists of several complex steps that are difficult
to optimize. Automating the transistor sizing process specifically comes with many
challenges. The problem has a large design space, requires complex performance
trade-offs, and needs to adjust to rapidly advancing semiconductor technology. As a
result, the task of sizing transistors is traditionally performed by experts with years
of experience. Various optimization and reinforcement learning methods have been
proposed to automate this process. While having shown great competency, these
methods must learn complex circuit dynamics from scratch, resulting in black-box
solutions. This thesis proposes that the background knowledge contained in Large
Language Models (LLMs) can guide the decisions of circuit designers, and that this
guidance can be used to improve the exploration efficiency of both mathematical op-
timizers and reinforcement learning algorithms. This thesis demonstrates that LLMs
possess a foundational understanding of analog circuit design including circuit cal-
culation and netlist comprehension. It also built a framework to integrate LLMs
as heuristic tools with existing optimization methods. This is a first-of-its-kind ex-
ploration into linking LLMs with optimization techniques for analog circuit design.
While the current experimental results do not show improvements in design quality
or speed, this work establishes the groundwork for further advancements with more
sophisticated or fine-tuned LLMs.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Professor, Dean of MIT’s School of Engineering

Thesis Supervisor: Xin Zhang
Title: Research Staff Member and Manager, IBM T.J. Watson Research Center

3

4

Acknowledgments

First, I want to express my thanks to my thesis supervisors Dr. Xin Zhang and

Professor Anantha P. Chandrakasan. I specifically want to thank Dr. Xin Zhang for

this opportunity to learn so much in this emerging field through this project.

I would also like to express my sincerest thanks to Hanrui Wang whose work with

GCN-RL served as the foundation for all of the work done for this project, proving

the circuits’ early simulation infrastructure and design feedback. Next, I would like

to thank Dimple Vijay Kochar for her help in steering the project to its conclusion.

Finally, I want to thank the other PhD interns at the IBM AI Watson Lab for

talking me through all of my initial questions about LLMs. This project would not

have happened without you all.

5

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Thesis Overview . 14

1.3 Analog Integrated Circuit Design . 14

1.4 Large Language Models . 15

1.5 Reinforcement Learning . 15

2 Related Work 17

2.1 Automated Chip Design . 17

2.2 LLMs for engineering design . 17

2.3 LLMs for guiding RL algorithms . 18

3 Capability of LLMs in Analog Integrated Circuit Design 19

3.1 LLMs for General Circuit Knowledge 21

3.2 LLMs for Circuit Calculations . 24

3.3 LLMs for Netlist Comprehension . 26

4 Using LLMs to Improve Circuit Optimization 29

4.1 LLM as an Optimizer . 30

4.1.1 Implementation . 30

4.2 LLM as Guidance to a Mathematical Optimizer 34

4.2.1 Goals . 34

4.2.2 Implementation . 35

7

4.2.3 Implementation Discussion . 37

4.2.4 Evaluation . 40

5 Improving RL exploration with LLMs 45

5.1 Implementation . 45

5.2 Results . 46

6 Conclusion 49

A Appendix 51

A.1 Truncated Netlists Given to LLM . 51

A.1.1 Two Stage Transimpedance Amplifier 51

A.1.2 Three Stage Diff Trans Amplifier 53

A.1.3 Two-Stage Voltage Amplifier 55

8

List of Figures

3-1 Proposed LLM Testing Procedure 20

3-2 Example of Multiple Choice LLM Question Response GPT-3.5-turbo 21

3-3 Zero Shot Accuracy on QA Dataset 23

3-4 Prompt Techniques on QA Dataset with Llama2-70b 23

3-5 SPICE Op Amp Circuit Netlist and Circuit 24

3-6 Llama2 70b Gain Calculation. Llama2 identifies the correct equation

but fails to calculate the correct value. 25

3-7 GPT-3.5-trubo Gain Calculation. GPT-3.5-turbo identifies the correct

equation and calculates the correct answer. 25

3-8 GPT-3.5-turbo is Asked to Describe Components of a Circuit. It is able

to identify all of the components using the netlist provided. (truncated) 27

3-9 LLM Pick Component To Modify Gain 27

4-1 LLM as a Circuit Optimizer . 31

4-2 Topologies for Three Analog Circuits to be Optimized 31

4-3 Two Stage Transimpedance Amplifier Circuit Diagram 32

4-4 LLM Optimization Prompt for TIA. GPT-3.5-turbo 33

4-5 Convergence of LLM Optimization. The larger model is able to con-

verge to the goal of 80 Ω but GPT-3.5-turbo is not 34

4-6 Goal and Parameter LLM Optimization Prompt 36

4-7 Two Stage Prompt Optimization Loop 36

4-8 LLM as Guidance to a Mathematical Optimizer 39

4-9 Improved LLM Optimization Prompt and Output 39

9

4-10 TIA Comparison of Algorithms. Adding in LLM guidance shows no

improvement over the existing ES optimizer 40

4-11 Evaluating performance of LLM-Optimizer algorithm 41

4-12 Comparison of Performing of Different LLMs 42

4-13 LLM Optimization Algorithms for Three Stage Diff Trans Amplifier

and Two Stage Voltage Amplifier . 43

4-14 Performance Comparison of LLM Guidance Compared to a Random

Choice of Component on All Circuits 43

5-1 LLM Guided Reinforcement Learning Optimization Loop 45

5-2 LLM Guided DDPG Reinforcement Learning 48

10

List of Tables

11

12

Chapter 1

Introduction

1.1 Motivation

One of the most difficult reasoning tasks humans are capable of is the engineering

design process. A designer needs to be able to identify a problem and generate a

design specification. They must then leverage an extensive knowledge base of design

techniques to generate possible designs. Finally, they need to evaluate and optimize

their solution to fit real-world constraints. As a result, automating the design pro-

cess has proven to be immensely challenging. Recent advances in the development

of Large Language Models (LLMs) have introduced models that have been shown to

perform many of these key skills. While LLMs have been used to identify problems,

generate solutions, and compute results, they have been plagued with accuracy issues

and struggle with analytical reasoning. To solve the problem of designing analog

integrated circuit (IC) chips, a designer needs to be able to leverage their knowledge

of chip design principles and execute performance calculations (usually with the help

of simulation models) to design a chip that matches its specifications. This thesis

proposes a machine learning pipeline that mirrors the capabilities of an expert cir-

cuit designer, combining the reasoning and expert knowledge capabilities inherent

to LLMs with the optimization powers of reinforcement learning algorithms. The

design guidance provided by LLMs is used as a heuristic for a mathematical opti-

mizer. The goal of this heuristic is to reduce the search space of global optimizers

13

and guide the training of reinforcement learning algorithms by randomly including

expert demonstrations to the exploration.

1.2 Thesis Overview

The section on Capability of LLMs in Analog Integrated Circuit Design (Chapter 3)

describes how the LLMs are evaluated to show if they contain any of the fundamen-

tal skills needed for Analog IC design. This section also includes a description of

a Python-based framework that can measure the performance of LLMs on any QA

dataset. The section regarding the use of LLMs to Improve Circuit Optimization

(Chapter 4) introduces the main contributions of the thesis: a Python-based circuit

optimizer framework that can incorporate LLM guidance to optimize analog circuits.

This framework is compatible with a variety of LLMs, analog circuits, and optimiza-

tion algorithms. It is also modular and can be used to evaluate method variations.

Using this modularity, evaluations of a few variations of LLM-guided optimization

loops were performed. The next section (Chapter 5) builds on the optimization

framework. The circuits are made compatible with the OpenAi Gym environment

framework so they are compatible with a large variety of RL and optimization algo-

rithms. Then a LLM guided RL pipeline is proposed and evaluated against the non

LLM guided RL method.

1.3 Analog Integrated Circuit Design

The Analog IC design process consists of several design stages. First, the design

specifications need to be chosen. For example, a the circuit should have a specific

gain while minimizing power consumption and noise. Decisions on device size, type,

and other process features including transistor selections and high-level floorplanning

are then made based on models of various performance functions. Once a topology

is chosen by the designer, the circuit is optimized through an iterative process of

simulation and redesign. In this process, one of the most labor-intensive steps is

14

sizing the transistors in the circuit design. Initial sizings are manually calculated by

expert designers to match performance metrics or Figures of Merit (FoM). However,

finding an optimal transistor sizing is difficult due to the large design space and

complex performance trade-offs.

1.4 Large Language Models

LLMs have been revolutionizing the field of Natural Language Processing. LLMs are

trained on text prediction tasks across large multidomain corpora. These pre-trained

models can perform complex tasks like arithmetic, question answering, and multi-step

reasoning. By leveraging few-shot examples through prompting, these models can be

competitive with task-specific fine-tuned models [5]. This makes LLMs a great fit for

data-sparse tasks because they need fewer training examples.

1.5 Reinforcement Learning

Reinforcement learning (RL) is a general-purpose learning method for generating

policies in a wide variety of environments. RL’s powerful learning strategy allows it

to be applied to various optimization problems. As action spaces or target behaviors

grow more complex, creating effective learning strategies becomes more difficult and

training times skyrocket. For some domains, including transistor sizing, deep RL

proves to be transferable [25]. However, the initial RL model still needs to be trained

from an empty policy.

15

16

Chapter 2

Related Work

2.1 Automated Chip Design

Various AI methods have been deployed for improving electronic design automation

(EDA). Different stages in the design process have been tackled by a variety of machine

learning methods. Deep learning, Generative Adversarial Networks, and Deep-RL

have been deployed to solve and optimize the physical design and manufacturing

process [15, 30, 18]. RL methods have shown great success in generating improved

circuit designs [31, 26, 25]. Deep-RL has also been used to tackle performance

modeling and optimization [6, 17, 23]. These past works show that machine learning

methods and specifically Deep-RL methods can automate labor-intensive design steps.

However, these methods treat the problems like a black-box optimization problem.

The use of LLMs in the analog circuit design process can improve explainability and

reduce the extensive exploration phase needed for training the RL models.

2.2 LLMs for engineering design

The scale of LLMs has greatly improved their performance on a variety of Natural

Language Processing tasks [5]. However, this scale has also given them emergent

abilities not seen in smaller models [27]. For example, recent studies show LLMs

can perform computational and multi-step reasoning tasks [10]. They have even

17

shown to solve simple optimization problems [29]. Other studies show LLMs can

act like knowledge bases [21]. When combined, these properties allow LLMs to act

like human task assistants. Specifically, recent work has demonstrated that these

emergent abilities in LLMs can be used to advance the computational design and

manufacturing process [16]. While these capabilities are powerful, their usefulness is

limited by LLMs’ inability to provide correct outputs or correct themselves without

human supervision [4].

2.3 LLMs for guiding RL algorithms

One of the largest drawbacks of reinforcement learning is that RL agents learn tabula

rasa, without knowledge of the world. In complex reward spaces, this can lead to

long training times. Work has been done with transfer learning to allow RL models

to use a previously trained model as a training starting point [32]. However, the

further two tasks are from each other the harder it is to identify if the model can be

transferable. Transformer adaptors have been proposed for LLMs to train parameter-

efficient models [13]. Other methods have been proposed using LLMs to directly guide

pre-training in the reinforcement learning process [7, 19]. These methods use the

LLMs as real-world models that can guide the learner agent toward a more plausible

direction. External Knowledge has also been incorporated into RL training pipelines

as heuristics [2].

18

Chapter 3

Capability of LLMs in Analog

Integrated Circuit Design

LLMs have been shown to be able to automate parts of the design and manufactur-

ing process [16], by showing that they have a broad knowledge base of manufacturing

design skills. However, to use LLMs to empower the design of analog IC circuits, we

must verify our underlying assumptions. This thesis proposes that we can use the

information embedded in LLMs during their pre-training to guide design decisions.

This means that LLMs would need to not only contain information about analog cir-

cuit design, but we also need to be able to access that information through the correct

use of prompting. To verify these assumptions, a testing procedure was developed to

evaluate the skills of LLMs as applied to analog circuit design. Since the ability to de-

sign is difficult to quantify, much less measure, the testing procedure breaks the task

down into smaller steps that are easier to evaluate. The testing procedure is shown

in figure 3-1. The evaluation is split up into two parts. First, it tests the LLM’s

domain knowledge of analog circuit design. Second, it tests specific skills this project

needs the LLM to have to interface with the automated design pipeline. These skills

are tested with a series of tests that can be analyzed qualitatively or quantitatively.

The goal of these experiments is to test the strengths and weaknesses of LLMs when

it comes to design. The results of the experiments informed the development of the

rest of the project.

19

Figure 3-1: Proposed LLM Testing Procedure

20

Figure 3-2: Example of Multiple Choice LLM Question Response GPT-3.5-turbo

3.1 LLMs for General Circuit Knowledge

The first experiment performed was an evaluation of LLMs’ general analog circuits

knowledge. A dataset of 456 analog circuit design questions was compiled from a

reference of analog circuit multiple choice questions [3]. The questions were cate-

gorized by topic and restructured to be in the same format. In 3-2 an example of

the multiple-choice question format can be seen. The LLM is given some context for

the question. This includes the fact that it is about to be asked a multiple choice

question, the format it needs to respond in, and sometimes extra prompting. Then

the question is asked followed by the four possible answers.

In order to automate the experiments I developed a program that takes in any

multiple-choice QA dataset structured as a JSON file and prompts any LLM to answer

the questions. The program then parses the LLM output and extracts the LLM’s

answer. If the code is unable to find an appropriate answer, the LLM is re-prompted

to answer the question in the correct format.

Even with the same set of inputs, the performance of different models varies

greatly. With the automated testing procedure, I was able to evaluate the performance

of various commonly used state-of-the-art Large Language Models on this QA dataset.

21

Figure 3-3 shows the accuracies of Meta’s Llama2 with 13b parameters, Llama2 with

70b parameters, OpenAI’s GPT-3.5-turbo, and GPT-4. [24] [20] These models were

sent the same prompt structure as shown in 3-2, including the context that they are

role-playing as an analog circuit design assistant.

An interesting aspect of LLMs is how much the exact wording of an LLM prompt

affects the results of the output. In [11], it was shown that adding text that asks the

LLM to role-play improved the performance of LLMs for various tasks. I incorporated

these techniques into my testing procedure by allowing the user to select various

additions to the LLM prompts. I specifically built in the possible addition of the

phrases: "You are an analog circuit design assistant (or expert)", "Let’s talk about

this in a step-by-step way", and "Please be sure you have the correct answer". I also

added the ability to include a few examples of questions and answers. I then tested

the effect of these prompt techniques on the performance of the LLMs on the QA

dataset.

Figure 3-4 shows the performance of the same Large Language Model (Meta’s

Llama 2 with 70 billion parameters) on the QA dataset. The prompt techniques tested

were the inclusion of 3 example questions and their correct answers, and the addition

of the prompt techniques mentioned above. For this Large Language Model, the

addition of examples to the prompt made the largest and most consistent improvement

in its performance. However, the inclusion of three prompting techniques together:

examples, assistant, and step-by-step showed the largest performance boost. These

experiments tested very simple prompt tuning techniques. Further work could be done

to improve the performance of the LLMs through both manual [28] and automated

prompt tuning [1]. However, these results show that there is a benefit to including

prompt tuning techniques to improve general LLM performance.

While not perfect, these results show that pre-trained large language models not

tuned for specific analog circuit design tasks have access to and are able to utilize

general circuit design knowledge to answer domain-specific questions. With some

prompt tuning or fine-tuning of the models, even more accuracy could possibly be

achieved.

22

Figure 3-3: Zero Shot Accuracy on QA Dataset

Figure 3-4: Prompt Techniques on QA Dataset with Llama2-70b

23

Figure 3-5: SPICE Op Amp Circuit Netlist and Circuit

3.2 LLMs for Circuit Calculations

The experiments on the QA dataset show that openly available pre-trained LLMs

contain knowledge about analog circuit design and that they can use that knowledge

to answer design questions. However, in order to design circuits, the LLMs must

be able to identify the equations relevant to the problem and be able to make the

correct calculations. These skills were tested by asking the LLM to make a very

simple calculation to achieve the desired gain. An op amp was used for this test due

to its simplicity and commonality. The circuit and its SPICE netlist are shown in 3-5.

Figure 3-6 shows the prompt the LLM is given (with the op-amp netlist omitted for

space). The right side of Figure 3-6 displays the response Meta’s Llama2-70b model

gives to this input. The model can identify what the question is asking for an answer

in the right manner. However, even with the correct equation, the model does not

seem to make the correct calculation and therefore the final answer is incorrect.

However, models like OpenAI’s ChatGPT 3.5 were able to not only identify the

right equation to use but also correctly calculate the right value to return as seen in

Figure 3-7.

24

Figure 3-6: Llama2 70b Gain Calculation. Llama2 identifies the correct equation
but fails to calculate the correct value.

Figure 3-7: GPT-3.5-trubo Gain Calculation. GPT-3.5-turbo identifies the correct
equation and calculates the correct answer.

25

This is just one example of two different LLM’s performance with mathematical

reasoning. However, it is largely representative of LLM’s general performance when

asked to make calculations. When asked a variety of questions about circuit calcula-

tion, LLMs can largely identify the correct expression, however unable to consistently

give correct answers to simple calculations or give correct explanations for their an-

swers. Some of the models were able to correct themselves with follow-up prompting

but the prompting needed to be specific to the LLM’s error.

3.3 LLMs for Netlist Comprehension

In order to automate the design process, LLMs need to be able to take circuits as

inputs. In electronic design, a netlist is a description of the components of a circuit

and how they are connected. They provide a textual representation of a circuit design.

If LLMs can understand netlists, then they can understand and process any circuit

if it is converted into a netlist. The previous gain experiments introduce the use of

netlists, however, LLMs full understanding of netlists needs to be tested.

To begin with, the LLM was asked to identify the components of a circuit given

a netlist. The op-amp from Figure 3-5 was used and given to the LLMs: Meta’s

Llama2-70b and OpenAI’s GPT-3.5-turbo. Figure 3-8 shows the LLM prompt and

subsequent output. For this figure, the output was truncated for brevity. Figure 3-9

shows that the LLM is able to identify what part of the circuit would need to be

modified to achieve the desired goal.

These preliminary analyses with simple circuits demonstrate that in general, these

LLMs are able to describe the components of a circuit given a circuit name and

commented netlist. They have also shown that they can identify the parts of a circuit

that affect certain performance metrics like gain and bandwidth.

Conclusion

When asked to make improvements to the circuits, the models were able to identify

and update specific parameters specified within a netlist. However, given a netlist and

26

Figure 3-8: GPT-3.5-turbo is Asked to Describe Components of a Circuit. It is able
to identify all of the components using the netlist provided. (truncated)

Figure 3-9: LLM Pick Component To Modify Gain

27

its performance goals and using zero-shot prompting none of the models were able

to make consistent improvements to the requested circuit metrics by just adjusting

the transistor sizes. Despite this, the results are promising because the recommended

changes did line up with procedures that a chip designer would use to refine their

design.

28

Chapter 4

Using LLMs to Improve Circuit

Optimization

Now that we have demonstrated the proficiency of Large Language Models (LLMs) in

key analog circuit design tasks, the next step is to leverage these capabilities to develop

an automated chip design process. When designing an analog circuit, designers are

given a set of desired specifications they must achieve. These specifications include

goals like achieving a minimum gain, maximizing the bandwidth, and minimizing the

noise. The designer achieves those performance metrics by making changes to their

circuit. These modifications can include structural changes, however, this project

will focus on just changing the parameters of the circuit once the circuit diagram has

already been generated. This includes the sizings of the transistors and the values

of some resistors and capacitors. In order to make the proper changes, the designer

needs to understand the components of the circuits and what they do so they can

modify the correct parameters. However, due to the complex nature of circuits even

expert circuit designers need to go through the process of repeated simulation and

testing to fine tune the transistor sizings and other parameters.

29

4.1 LLM as an Optimizer

Our experiments show that LLMs can comprehend netlists, identify components

within the circuits and accurately describe their functionality based on the provided

netlists. They also show that they can identify what components and parameters

need to be modified to make improvements in specific specification objectives. If

these skills could be properly leveraged, they can replicate the actions of an analog

circuit designer. Thus a possible automation strategy would be to simply replace the

actions of the designer with a Large Language Model.

4.1.1 Implementation

When replicating the actions of an expert designer in the transistor sizing step, the

LLM would need to make decisions about the sizing of each transistor in the circuit.

Then, once the circuit parameters are chosen, the updated circuit can be simulated.

Finally, upon the completion of the simulation, the LLM can be asked to make further

improvements given the new state of the circuit. Figure 4-1 shows the structure of

this automated design loop. In this method, a Large Language Model is presented

with all of the information a circuit designer would have. It is given a circuit that

needs to be modified, a description of the specifications it needs to achieve, and the

current state of the performance metrics and parameters. Then the LLM is asked to

modify the parameters. When the LLM returns a set of new parameters, the updated

values are sent to a circuit simulation software. The simulator then performs the AC

and DC simulations to measure the performance metrics and returns the result of

those experiments. In this project, the simulators used include Ngspice, SPECTRE,

and HSPICE. Finally, the new state is plugged back into the LLM and the model is

asked to improve the circuit once again. This thesis builds off the work done in [25]

and uses the same circuits to test on. The circuits tested are a Op Amp circuit, Two

Stage Transimpedance Amplifier, Three Stage Diff Trans Amplifier and Two Stage

Voltage Amplifier 4-2.

30

Figure 4-1: LLM as a Circuit Optimizer

(a) Two-Stage Transimpedance
Amplifier

(b) Two-Stage Volt-
age Amplifier

(c) Three-Stage Transimpedance
Amplifier

Figure 4-2: Topologies for Three Analog Circuits to be Optimized

Op Amp Circuit

As a baseline, a simple optimization loop was set up to test the proposed optimization

loop and build the LLM parser. The prompt in Figure 3-6 was used as the problem

context for the LLM input. In order to extract an answer from the LLM output,

we developed a text parser that extracts a desired value from a text given a context

and a format. If the parser is unable to find an answer, it automatically re-prompts

the LLM to reformat its answer in the format it was asked to answer in. Then once

the answer is extracted the new value is inserted into the netlist and then simulated.

Finally, based on the output of the simulation, the LLM is given feedback on its

performance. For example, if the gain is too low, the LLM is told "This gain of your

circuit is too low. Please increase the gain". This completes the optimization loop.

For the first implementation, the simple op amp in Figure 3-5 was used as a test

case. The LLM call in Figure 3-6 was connected to the text parser and simulator to

31

Figure 4-3: Two Stage Transimpedance Amplifier Circuit Diagram

create the automated optimization loop. The LLM is asked to modify the circuit to

achieve a gain of 6. Like in the previous test, the gain was achieved in one iteration

with OpenAI’s GPT-4 and in 2 iterations with Meta’s Llama2 70b.

Two Stage Transimpedance Amplifier

The next circuit tested was a Two Stage Transimpedance Amplifier (TIA) (Figure

4-3). This is still a common circuit, but it is significantly more complex than the op-

amp. This circuit contains 6 transistors and has 11 parameters that can be modified.

However, to keep the tests simple first, just one resistor value was asked to be modified

to increase the gain. The LLM prompt in Figure 4-4 was given to GPT-3.5 Turbo.

The prompt asks for a gain of 80 Ω but only lets the LLM modify the resistor Rf.

The TIA netlist given to the LLM is attached in the appendix. One thing to note

is that the search history of the LLM was included in the prompt to allow the LLM

to get more feedback than just the current value of the gain. Figure 4-5 compares

the performance of GPT-3.5-turbo and GPT-4. GPT-3.5-turbo is unable to converge

to the correct solution and does not seem to be able to interpolate a better solution

based on the search history. On the other hand, GPT-4 is able to converge to the

correct solution. Both models state that they extrapolated the relationship between

the resistor value and the gain based on the search history. However, only GPT-4

was able to make the correct calculations.

While these results are promising, this method is still limited to single goals and

single parameters for an easily interpretable relationship. In addition, these experi-

32

Figure 4-4: LLM Optimization Prompt for TIA. GPT-3.5-turbo

ments consistently show that the LLM continues to struggle with mathematical rea-

soning and returning numerical answers.

While the outlined automation works for very simple circuits with one goal and

one parameter to change, applying this pipeline to more complicated circuits comes

with a few new key implementation questions that need to be answered. First, us-

ing more complex circuits means there are more parameters to modify. The output

generated by language models can be challenging to parse, even when searching for

single answers. Finding numerical answers in the LLM text output also consistently

proved to be a challenge. The LLMs often did not completely respect the format of

the answer. For instance, they inserted intermediary calculations or counter-example

that confused the parser. On the other hand, asking follow-up clarification questions

sometimes changed the answer the LLM gave. So far, the LLMs were only asked to

modify a single parameter. The circuits chosen to be tested have up to 18 different

parameters (see THA circuit 4-2) that can be modified and other circuits can have far

more than even that. Another large challenge is representing design goals and feed-

back solely through textual descriptions. The design specifications, or desired Figures

of Merit (FoM) are numerical inputs, and, as discussed in section 3.2, mathematical

calculations don’t play to LLM strengths. Finally, the expectation that this approach

33

(a) GPT-3.5-turbo (b) GPT-4

Figure 4-5: Convergence of LLM Optimization. The larger model is able to converge
to the goal of 80 Ω but GPT-3.5-turbo is not

would enhance model transparency is also questionable. Throughout testing, LLMs

show inconsistency between the explanations provided by the language models and

their final answers. All of these problems need to be considered when applying this

LLM automation loop to a more complex task.

4.2 LLM as Guidance to a Mathematical Optimizer

Even in the smaller models like Llama2 and GPT-3.5-turbo, the LLMs are able to

identify useful design information and show some mathematical intuition. If their

expertise could be leveraged by supplementing their mathematical limitations, that

would allow for the use of smaller more efficient models. Based on these conclusions,

the next iteration of the automated chip design pipeline extends the optimization

loop to include a mathematical optimizer to make final sizing choices.

4.2.1 Goals

The question arises: Mathematical optimizers like Evolutionary Search are already

very powerful tools and perform very well on transistor sizing problems[25], so why not

just use those? As the complexity of the circuits rises and the number of parameters

increases, the search space explodes. If we can use LLMs as heuristics to navigate the

34

search space more efficiently, the complexity of the circuits can be increased without

an explosion in the search time. The goal of this implementation is to see if the LLM

knowledge can be used as a way to guide the optimizers to search more effectively.

This would be measured through the number of simulations needed to find the best

parameters.

4.2.2 Implementation

For the Two Stage Transimpedance Amplifier (TIA), there are 5 specifications that

need to be achieved.

• The bandwidth needs to be maximized.

• The closed loop gain needs to be at least 7.58 * 102Ω.

• The power needs to be minimized with a maximum of 18mW.

• The noise needs to be minimized with a limit of 19.3 pA/
√
𝐻𝑧.

• The peaking needs to be minimized with a maximum of 1 dB.

In order to optimize the TIA circuit, the implementation of the optimization loop

must handle this more complicated problem space.

Like before, the LLM is given an overview of its goals and a report of its current

performance. Then it is asked to identify which component needs to be modified next

for the circuit to achieve its desired specifications. Once the component is chosen by

the LLM, the mathematical optimizer performs a search, only modifying the selected

parameters in order to find a better solution. Figure 4-6 shows the two prompts

given to the LLM. The first prompt tells the model it needs to achieve the desired

specifications and asks what specific goal it would optimize first. Then based on the

LLM’s response, the second prompt asks the LLM to pick a parameter to modify.

35

Figure 4-6: Goal and Parameter LLM Optimization Prompt

Figure 4-7: Two Stage Prompt Optimization Loop

36

4.2.3 Implementation Discussion

To attach the mathematical optimizers to the optimization loop, rather than ask the

LLM to modify a specific parameter itself, the model is asked to just pick a parameter

to modify. Then, that parameter is modified by a mathematical optimizer to find the

best result. For these experiments, Evolutionary Search and Random search were

used. To evaluate the circuit I represent the Figures of Merit (FoM) as the weighted

sum of the normalized performance metrics. The equation and performance bounds

are taken from [25].

A major problem with the optimizer loops is that the LLMs did not change their

answers when the prompt had limited changes. The only changes in the prompt were

the numerical values of the FoM. This poses a huge problem for the general principle

behind the optimization loop. The LLMs were able to give good advice initially about

what changes to make to the circuit. However, if the LLM no longer made significant

improvements in the goals, the prompt would not change very much and the LLMs

tended to give the same answer again and again. The design tried to mitigate this

problem by adding as much descriptive input into the model as possible. In order

to add more descriptive input, qualitative feedback was added to the performance

metrics including phrases like "this is too low" or "this is too high" [16]. However,

this did not fully mitigate the problem and in general, the performance of the LLMs

tended to flatten out relatively quickly. A technique that did help reduce this issue

was to add the phrase "You want to explore different designs." to the LLM prompt.

Another large problem in the optimization loops was a misalignment between the

performance goal of the LLM and the reward for the optimizer. While we desire an

improvement in the gain or the bandwidth individually, if the optimizer only considers

one of the goals per iteration, it might return a solution that improves the gain at

the cost of the other performance metrics. This was reflected in the performance of

this initial strategy. While the LLM was able to make modifications to satisfy the

sub-goals, the final weighted average FoM result stayed low. This fact also brings

up another misalignment. In early variations, when the model selects the goal and

37

the parameter to modify, the optimizer’s reward is based solely on the performance

metric specified. However, in order for the optimization to find the best answer as

a whole the reward for all of the optimization steps was set to the weighted average

FoM. Further experiments using the FoM as a goal for the optimizer also showed

that asking the LLM to pick a performance goal to focus on did not result in any

improvement in performance as compared to giving the LLM all of the specifications

as a goal every time. This also finally aligns the prompts’ stated goal for the LLM

and the goal the optimizers are searching for.

Another design change was a shift from optimizing individual parameters to op-

timizing components of the circuit. For the TIA, there are multiple parameters that

all define the dimensions of individual transistors. Therefore, rather than asking the

LLM to pick parameters, it was changed to ask to choose which components to mod-

ify. This means that if it chose transistor M1, the optimizer would modify all of the

parameters that influenced M1. This principle could be extended to other circuit

subgroups since the effects of the components are coupled to each other. In the TIA

transistors M1, M2, M3, and M4 make a current-to-voltage conversion circuit, and

M1 and M2 make one current mirror. If the LLM could specify changes to these

component groups it could provide the LLM with more power to be specific about

the changes it recommends.

Finally, in order to improve the connection between the LLM and the optimization

loop, I added a second smaller language model to help parse the output of the LLM

[22].

The changes in the prompt can be seen in Figure 4-9. In this prompt, the goal

of the model is to maximize the FoM. Then, rather than give numerical goals, the

model is told to either maximize or minimize the performance goals and only the FoM

is given as a number. The model is then asked to pick a component to modify and

told to explore different designs. Finally, the format of the answer is specified along

with a request to explain its answer. This not only allows us to follow along with the

LLM’s designs, but it also improves the accuracy of the LLMs [28].

38

Figure 4-8: LLM as Guidance to a Mathematical Optimizer

Figure 4-9: Improved LLM Optimization Prompt and Output

39

Figure 4-10: TIA Comparison of Algorithms. Adding in LLM guidance shows no
improvement over the existing ES optimizer

4.2.4 Evaluation

Two Stage Transimpedance Amplifier

Figure 4-10 plots the performance of the different optimization algorithms imple-

mented. The first algorithm is the implementation of the LLM optimization loop

with the output of the GPT-3.5-turbo LLM connected to an evolutionary search op-

timizer. The second algorithm replaces the evolutionary search with a random search.

Both algorithms are set to run from 30 steps per LLM call. Then they are compared

against the baselines of a regular evolutionary search algorithm and a random search.

The two LLM-Optimizer algorithms have a similar performance and perform a lot

better than a random search. However, the regular evolutionary search algorithm

performs the best.

When comparing the performance of the LLM-Opti algorithm against a random

search baseline, the LLM-Opti algorithm has a much stronger performance as seen

in Figure 4-11a. However, since the structure of the random search algorithm is

also different, we need to test if the LLM is the cause for the improvement. In

40

(a) LMM Guidance Improvement over Ran-
dom Search

(b) LLM Guidance Compared to a Random
Choice of Component

Figure 4-11: Evaluating performance of LLM-Optimizer algorithm

the test, the actions of the LLM were replaced with a random choice of the possible

components, as shown in Figure 4-11b. The LLM does not seem to have any improved

performance over a random selection of the components. This shows that the principle

of the algorithm is promising but the current LLMs or exact implementation does

not realize the model’s full potential. The optimization pipeline was also tested with

different LLMs. Figure 4-12 shows GPT-4 outperforms GPT-3.5-turbo, but not to

a significant amount, while Llama2-70b performs the worst. This implies that even

with the current state-of-the-art model the performance is not significantly improved.

Three Stage Diff Trans Amplifier and Two Stage Voltage Amplifier

Experiments were also performed with two other circuits of similar complexity 4-13.

The results of these experiments were almost identical to the tests performed on

the TIA circuit. These circuits were also used to compare the results of the LLM

guidance against random component choices to measure if the LLM’s guidance is the

cause of the performance difference. Figure 4-14 shows that for all three circuits,

the performance increases are almost identical between LLM guidance and a random

component picker. For the Two Stage Voltage Amplifier the LLM archives a higher

FoM but it also starts from a better initial parameter set.

41

Figure 4-12: Comparison of Performing of Different LLMs

Conclusions

These experiments show LLMs can give good design advice and even update pa-

rameters to achieve specific goals for simple circuits. However, the structure of the

optimization loop does not seem to work well for optimizing complex circuits with

numerous objectives. During optimization one of the largest issues was an inability to

improve past a small number of initial iterations. When the LLMs were continuously

prompted with the same question with only small variations, they were unable to

adapt their responses to the simulation’s new updates.

42

(a) (b)

Figure 4-13: LLM Optimization Algorithms for Three Stage Diff Trans Amplifier
and Two Stage Voltage Amplifier

(a) (b) (c)

Figure 4-14: Performance Comparison of LLM Guidance Compared to a Random
Choice of Component on All Circuits

43

44

Chapter 5

Improving RL exploration with LLMs

One of the biggest downfalls of RL is the number of samples it needs to learn a policy

If we can guide the training of an RL algorithm to search in more productive spaces, it

could reduce the number of simulations needed to find an optimal policy. This project

proposes a framework that incorporates the LLMs’ knowledge of the design process

to guide the training of a reinforcement learning algorithm described in Figure 5-1.

5.1 Implementation

The question is how does the LLM guide an RL algorithm? In [2] the exploration

of an RL agent was guided with a heuristic. Most of the time the agent’s actions

were determined by the current RL policy. However, some percentage of the time,

Figure 5-1: LLM Guided Reinforcement Learning Optimization Loop

45

the actions were determined by the heuristic. The proposed LLM-RL model uses this

framework to incorporate the guidance of the LLM while allowing the RL algorithm

to fully explore the search space. The LLM interface works in a similar fashion to

the LLM-Optimizer interface. In each iteration, the LLM will be given a description

of the context of the problem, the netlist description of the circuit, the parameters it

can modify, and the metrics of the circuit it needs to optimize. However, for the RL

loop, it asks the LLM to either increase or decrease the size of the component chosen

to improve the FoM. Then, within the reduced search space an evolutionary search

will find the sizing of the component that achieves the best FoM. Finally, this new

FoM and sizing will be returned to the RL algorithm.

The reinforcement algorithm used as a foundation for the LLM-RL pipeline is a

Deep Deterministic Policy Gradient Algorithm (DDPG). DDPG was chosen because

it can solve problems with high-dimensional observation spaces while being able to

return actions in continuous action spaces [14]. The DDPG algorithm builds off of

the structure of a Deep Q Network that learns an optimal policy by learning from

state action pairs. It combines the DQN with an actor-critic approach which lets

one neural network (the actor) learn a state action policy while the other (the critic)

evaluates the action by building a policy that estimates the quality of the actions.

DDPG applies these RL techniques to the continuous action space by including target

networks that stabilize the solution. After the actor and critic models are updated

the target actor and critic networks are updated with a weight of 𝜏 << 1. This slowly

updates the weights of target networks preventing the network from diverting due to

the complex action space.

The LLM-DDPG reinforcement learning algorithm is described in algorithm 1.

5.2 Results

Like with the LLM-Optimizer loop, the use of LLM heuristics did not improve the

search of the reinforcement learning as seen in Figure 5-2. However, one consideration

to take into account is that every time the LLM is asked for guidance it takes 30

46

Algorithm 1 DDPG [14] with LLM guidance

1: Randomly initalize critic network 𝑄(𝑠, 𝑎|𝜃𝑄), with weights 𝜃𝑄 and 𝜃𝜇.
2: Initialize target networks 𝑄′ and 𝜇′ with weights 𝜃𝑄

′ ← 𝜃𝑄 and 𝜃𝜇
′ ← 𝜃𝜇

3: Initialize replay buffer ℛ
4: for episode=1 to M do
5: Initialize random process 𝒩
6: Receive initial observation state 𝑠1
7: for t=1 to T do
8: if 𝑔 ∼ 𝒰(0, 1) < 𝜏 then
9: Get action from LLM 𝑎𝑡 = LLMGuidance(𝑠1)

10: else
11: Select 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇)+𝒩𝑡 according to the current policy and exploration

noise
12: end if
13:
14: Execute action 𝑎𝑡, and observe reward 𝑟𝑡, next state 𝑠𝑡+1

15: Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in replay buffer ℛ
16: Sample a random minibatch of 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) from ℛ
17: Set 𝑦𝑖 = 𝑟𝑖 + 𝜆𝑄′(𝑠𝑖+1, 𝜇

′(𝑠𝑖+1|𝜃𝜇
′
)|𝜃𝑄′

)
18: Update critic by minimizing loss: 𝐿 = 1

𝑁

∑︀
(𝑦𝑖)−𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))2

19: Update actor policy using the sampled policy gradient:
20: ∇𝜃𝜇𝑖

𝐽 ≈ 1
𝑁

∑︀
𝑖∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑖

21: Update target networks:
22: 𝜃𝑄

′ ← 𝜏𝜃𝑄 + (1− 𝜏)𝜃𝑄
′

23: 𝜃𝜇
′ ← 𝜏𝜃𝜇 + (1− 𝜏)𝜃𝜇

′

24: end for
25: end for

47

Figure 5-2: LLM Guided DDPG Reinforcement Learning

simulations to return an answer. This is because the LLM’s guidance is still given

to an evolutionary search optimizer which picks a final set of sizings and rewards to

send to the RL training loop. If LLM could pick its own sizings it could reduce the

number of simulations between RL policy updates.

Improvements

The way I chose to guide the RL algorithm is only one way to incorporate outside

knowledge into an RL training pipeline. Other proposed methods have used LLMs

to pick initial higher-level actions and then used an RL agent to search after that

subspace [19]. A lot of advancements in RL performance have come from learning from

demonstrations. One such proposed method, DQfD leverages human demonstrations

to great success [8]. This method could be used for learning how to design circuits if

there was a dataset of sizing decisions made by expert designers on different circuits.

48

Chapter 6

Conclusion

Key Takeaways

The key contributions of this thesis include the evaluation of the analog circuit de-

sign capabilities of current state-of-the-art pre-trained large language models. The

development of an infrastructure for evaluating analog design tasks using LLMs. The

creation of an LLM-empowered optimization Python framework. And finally an im-

plementation of an LLM-RL training procedure for optimizing analog circuits. These

efforts lay the groundwork for further advancements in this field Currently, LLMs

remain relatively immature in highly specialized domains such as analog design. As

the technology evolves, this study can serve as a foundation for achieving more sub-

stantial improvements, potentially with the aid of more sophisticated or fine-tuned

LLMs.

Future Work

While preliminary experiments using these LLMs showed promising results when it

comes to using the models as chip design knowledge bases, further works need to be

done to verify these results. Specifically, analyses need to be performed to isolate

exactly what kinds of knowledge the models have about the circuits and the design

process as well as what parts of the prompt the models are using to generate their

response. The limits of the model should also be tested by increasing the complexity of

49

the circuits provided past what was done in this thesis. This will also help determine if

the models have a deeper knowledge of circuit design based on whether they are able to

correctly analyze uncommon circuits they more likely will not have seen before. So far

the experiments have been performed using mostly zero-shot prompting techniques.

However, great performance improvements have been seen with Chain-Of-Thought

reasoning [28] and other more refined prompting techniques. Furthermore, a lot of

LLM improvement is done through fine-tuning [9]. This can improve the performance

of the LLM in specialized domains. [12] This strategy could also be leveraged on

smaller LLMs allowing the LLM to act more efficiently. The connection between the

LLM and the optimization algorithms can also be further improved. The optimization

strategies that limit the search space per iteration performed better than a completely

random search. However, since current LLMs are not quite adapted to this problem

their guidance is not yet better than random. If better guidance could be extracted

from future LLMs this approach would be promising. Another initial goal of the thesis

was to improve the transparency of circuit optimization through the use of LLMs.

However, the explanations provided by LLMs for their decisions could not be trusted

to always match their final answers. Nevertheless, this thesis provided a framework

for integrating LLM guidance with optimization algorithms. Although the guidance

from LLMs may not always be entirely accurate, summarizing or compiling it could

still yield valuable insights into the optimization process.

50

Appendix A

Appendix

A.1 Truncated Netlists Given to LLM

A.1.1 Two Stage Transimpedance Amplifier

Uses open source transistors from EE214 HSpice models, Boris Murmann, January

2010

∗ Two Stage Transimpedance Ampl i f i e r

. param w1_2 = %su ∗ width o f nmos M1 and M2

. param w3_4 = %su ∗ width o f pmos M3 and M4

. param w5 = %su ∗ width o f nmos M5

. param w6 = %su ∗ width o f nmos M6

. param l1_2 = %su ∗ length o f nmos M1 and M2

. param l3_4 = %su ∗ length o f pmos M3 and M4

. param l5 = %su ∗ length o f nmos M5

. param l6 = %su ∗ length o f nmos M6

. param mul2_4 = %s ∗ mut ip l i e s width o f nmos M2 and M4

51

. param Rf = %s ∗ r f r e s i s t o r

. param R6 = %s ∗ r6 r e s i s t o r va lue

vdd vdd 0 1 .8

cd iode in 0 200 f

∗ Stage 1 : M1, M2, M3, M4 make a cur rent to vo l tage

conver s i on c i r c u i t

∗ M1 and M2 make one cur rent mirror

M1 in in 0 0 nmos214 w=w1_2 l=l1_2

M2 out1 in 0 0 nmos214 w=mul2_4∗w1_2 l=l1_2

∗ M3 and M4 make the second cur rent mirror

M3 in in vdd vdd pmos214 w=w3_4 l=l3_4

M4 out1 in vdd vdd pmos214 w=mul2_4∗w3_4 l=l3_4

∗ Stage 2 :

∗ M5 makes a common source amp l i f i e r

M5 out2 out1 0 0 nmos214 w=w5 l=l5

∗ M6 i s the l ead o f M5

M6 vdd g6 out2 0 nmos214 w=w6 l=l6

∗ r f r e s i s t o r determines the gain

r f x in RF

52

r6 vdd g6 R6

c load out2 0 20 f

vx out1 x 0

i s in 0 ac 1 dc 0 s i n (0 150u 1e9)

. end

A.1.2 Three Stage Diff Trans Amplifier

Uses open source transistors from EE114 HSpice models, Boris Murmann, October

2008.

∗∗∗ Three Stage D i f f Trans Amp ∗∗∗

. param w1 = %su

. param w2_3 = %su

. param w4_5 = %su

. param w6_7 = %su

. param w8_9 = %su

. param w10_11 = %su

. param w12_13 = %su

. param w14_15 = %su

. param w16_17 = %su

. param l1 = %su

. param l2_3 = %su

. param l4_5 = %su

. param l6_7 = %su

. param l8_9 = %su

53

. param l10_11 = %su

. param l12_13 = %su

. param l14_15 = %su

. param l16_17 = %su

. param rb = %sk

∗Using r e s i s t o r (RB) in s e r i e s with diode−connected MB to s e t

VovB

M4 vo1a 0 i i n a vss nmos114 w=’w4_5’ l =’l4_5 ’

M6 vo1a vo1a vdd vdd pmos114 w=’w6_7’ l =’l6_7 ’

M2 i i n a nbias vss vss nmos114 w=’w2_3’ l =’l2_3 ’

M5 vo1b 0 i i nb vss nmos114 w=’w4_5’ l =’l4_5 ’

M7 vo1b vo1b vdd vdd pmos114 w=’w6_7’ l =’l6_7 ’

M3 i i nb nbias vss vss nmos114 w=’w2_3’ l =’l2_3 ’

M10 vo2a vo1a v0d vss nmos114 w=’w10_11 ’ l =’l10_11 ’

M12 vo2a vo2a vdd vdd pmos114 w=’w12_13 ’ l =’l12_13 ’

M8 v0d nbias vss vss nmos114 w=’w8_9’ l =’l8_9 ’

M11 vo2b vo1b v0d vss nmos114 w=’w10_11 ’ l =’l10_11 ’

M13 vo2b vo2b vdd vdd pmos114 w=’w12_13 ’ l =’l12_13 ’

M9 v0d nbias vss vss nmos114 w=’w8_9’ l =’l8_9 ’

M16 vdd vo2a vouta vss nmos114 w=’w16_17 ’ l =’l16_17 ’

M14 vouta nbias vss vss nmos114 w=’w14_15 ’ l =’l14_15 ’

M17 vdd vo2b voutb vss nmos114 w=’w16_17 ’ l =’l16_17 ’

M15 voutb nbias vss vss nmos114 w=’w14_15 ’ l =’l14_15 ’

54

∗∗∗ Bias C i r cu i t r y ∗∗∗

M1 nbias nbias vss vss nmos114 w=’w1 ’ l =’ l1 ’

rB vdd nbias ’ rb ’

. end

A.1.3 Two-Stage Voltage Amplifier

∗∗∗ Two−Stage Voltage Ampl i f i e r ∗∗∗

∗ parameters

. param w2_6_8_9_11_12_16_17=%sn ∗ width o f nmos M2, M6, M8,

M9, M11, M12, M16 and M17

. param w1_4_10_15_22=%sn ∗ width o f pmos M1, M4, M10, M15,

and M22

. param w13_14_20_21=%sn ∗ width o f pmos M13, 14 , 20 , and 21

. param w0_3=%sn ∗ width o f nmos M0 and M3

. param w5_7=%sn ∗ width o f pmos M5 and M7

. param l2_6_8_9_11_12_16_17=%sn ∗ length o f nmos M2, M6, M8,

M9, M11, M12, M16 and M17

. param l1_4_10_15_22=%sn ∗ length o f pmos M1, M4, M10, M15,

and M22

. param l13_14_20_21=%sn ∗ length o f o f pmos M13, 14 , 20 , and

21

. param l0_3=%sn ∗ length o f nmos M0 and M3

. param l5_7=%sn ∗ length o f pmos M5 and M7

. param mul16_17=%s ∗ mut ip l i e s s i z e o f nmos M16 and M17

. param mul12=%s ∗ mut ip l i e s s i z e o f nmos M12

. param mul6_8=%s ∗ mut ip l i e s s i z e o f nmos M6 and M8

55

. param mul2=%s ∗ mut ip l i e s s i z e o f nmos M2

. param mul1_4=%s ∗ mut ip l i e s s i z e o f pmos M1 and M4

. param mul15_22=%s ∗ mut ip l i e s s i z e o f pmos M15 and M22

. param r0_1=%sK ∗ r0 and r1 r e s i s t o r va lue

. param c0_1=%s f ∗ c0 and c1 capac i t o r va lue

// Ce l l name : Miller_two_stage

subckt Miller_two_stage vbn vdd vin vip von vop v r e f

M17 (net015 net015 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=mul16_17 nf=1

M16 (net021 net021 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=mul16_17 nf=1

M12 (net3 vcmfb 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=mul12 nf=1

M11 (vbn vbn 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=1 nf=1

M9 (vbp vbn 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=1 nf=1

M8 (von vbn 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=mul6_8 nf=1

M6 (vop vbn 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=mul6_8 nf=1

M3 (net4 vin net3 0) nch l=l0_3 w=w0_3 m=1 nf=1

M2 (net3 vbn 0 0) nch l=l2_6_8_9_11_12_16_17 w=

w2_6_8_9_11_12_16_17 m=mul2 nf=1

M0 (net1 vip net3 0) nch l=l0_3 w=w0_3 m=1 nf=1

M22 (net35 vbp vdd vdd) pch l=l1_4_10_15_22 w=

w1_4_10_15_22 m=mul15_22 nf=1

56

M21 (net021 v r e f net35 vdd) pch l=l13_14_20_21 w=

w13_14_20_21 m=1 nf=1

M20 (net015 von net35 vdd) pch l=l13_14_20_21 w=

w13_14_20_21 m=1 nf=1

M15 (net18 vbp vdd vdd) pch l=l1_4_10_15_22 w=

w1_4_10_15_22 m=mul15_22 nf=1

M14 (net021 v r e f net18 vdd) pch l=l13_14_20_21 w=

w13_14_20_21 m=1 nf=1

M13 (net015 vop net18 vdd) pch l=l13_14_20_21 w=

w13_14_20_21 m=1 nf=1

M10 (vbp vbp vdd vdd) pch l=l1_4_10_15_22 w=w1_4_10_15_22

m=1 nf=1

M7 (von net4 vdd vdd) pch l=l5_7 w=w5_7 m=1 nf=1

M5 (vop net1 vdd vdd) pch l=l5_7 w=w5_7 m=1 nf=1

M4 (net4 vbp vdd vdd) pch l=l1_4_10_15_22 w=w1_4_10_15_22

m=mul1_4 nf=1

M1 (net1 vbp vdd vdd) pch l=l1_4_10_15_22 w=w1_4_10_15_22

m=mul1_4 nf=1

R0 (net012 net1) r e s i s t o r r=r0_1

R1 (net011 net4) r e s i s t o r r=r0_1

C0 (net012 vop) capac i t o r c=c0_1

C1 (net011 von) capac i t o r c=c0_1

IPRB0 (net015 vcmfb) iprobe

ends Miller_two_stage

// End o f s u b c i r c u i t d e f i n i t i o n .

// Ce l l name : cmdmprobe

subckt cmdmprobe in1 in2 out1 out2

57

parameters CMDM=1

ev i n j (in2 out2 in1 out1) vcvs gain=CMDM

v in j (inout in1) iprobe

vprb (inout out1) iprobe

f i i n j (0 out2) pcccs gain=CMDM probes=[vprb v i n j]

c o e f f s =[0 1 1]

ends cmdmprobe

// End o f s u b c i r c u i t d e f i n i t i o n .

// Ce l l name : Closed_loop_two_stage_TB

I0 (vbn vdd vir_n vir_p net07 net06 v r e f) Miller_two_stage

E0 (vip v r e f net3 v r e f) vcvs gain =0.5

E1 (vin v r e f net3 v r e f) vcvs gain=−0.5

V0 (v r e f 0) vsource dc=0.9 type=dc

V2 (vdd 0) vsource dc=1.8 type=dc

V1 (net3 v r e f) vsource mag=1 type=s i n e

C7 (vir_n vop) capac i t o r c=1p

C6 (vin vir_n) capac i t o r c=1p

C4 (vir_p von) capac i t o r c=1p

C2 (vip vir_p) capac i t o r c=1p

C0 (von 0) capac i t o r c=2.5 f

C1 (vop 0) capac i t o r c=2.5 f

I1 (vdd vbn) i s ou r c e dc=10u type=dc

I2 (net07 net06 von vop) cmdmprobe CMDM=−1

R2 (v r e f vir_n) r e s i s t o r r=1T

R0 (v r e f vir_p) r e s i s t o r r=1T

. end

58

Bibliography

[1] Ashlesha Akella, Abhijit Manatkar, Brij Chavda, and Hima Patel. An automatic
prompt generation system for tabular data tasks, 2024.

[2] Mauricio Fadel Argerich, Jonathan Fürst, and Bin Cheng. Tutor4rl: Guiding
reinforcement learning with external knowledge. In AAAI Spring Symposium
Combining Machine Learning with Knowledge Engineering, 2020.

[3] Manish Bhojasia. Analog circuits mcq (multiple choice questions), 2011.

[4] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-
chat: Challenges and opportunities in conversational hardware design, 2023.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[6] Jing Chen, Mohamed Baker Alawieh, Yibo Lin, Maolin Zhang, Jun Zhang,
Yufeng Guo, and David Z. Pan. Powernet: Soi lateral power device breakdown
prediction with deep neural networks. IEEE Access, 8:25372–25382, 2020.

[7] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter
Abbeel, Abhishek Gupta, and Jacob Andreas. Guiding pretraining in reinforce-
ment learning with large language models, 2023.

[8] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian
Osband, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys. Deep q-learning
from demonstrations, 2017.

[9] Hanxu Hu, Pinzhen Chen, and Edoardo M. Ponti. Fine-tuning large language
models with sequential instructions, 2024.

[10] Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical
reasoning using large language models, 2023.

59

[11] Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin
Zhou, Enzhi Wang, and Xiaohang Dong. Better zero-shot reasoning with role-
play prompting, 2024.

[12] Bhawesh Kumar, Jonathan Amar, Eric Yang, Nan Li, and Yugang Jia. Selective
fine-tuning on llm-labeled data may reduce reliance on human annotation: A
case study using schedule-of-event table detection, 2024.

[13] Anthony Liang, Ishika Singh, Karl Pertsch, and Jesse Thomason. Transformer
adapters for robot learning. In CoRL 2022 Workshop on Pre-training Robot
Learning, 2022.

[14] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning, 2019.

[15] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z.
Pan. Dreampiace: Deep learning toolkit-enabled gpu acceleration for modern
vlsi placement. In 2019 56th ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2019.

[16] Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma,
Bolei Deng, Megan Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens,
Peter Yichen Chen, Allan Zhao, Amy Zhu, Wil J Norton, Edward Gu, Joshua
Jacob, Yifei Li, Adriana Schulz, and Wojciech Matusik. How can large language
models help humans in design and manufacturing?, 2023.

[17] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Re-
source management with deep reinforcement learning. In Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, HotNets ’16, page 50–56, New York,
NY, USA, 2016. Association for Computing Machinery.

[18] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori,
Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, Azade
Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer,
Anand Babu, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter, and
Jeff Dean. Chip placement with deep reinforcement learning, 2020.

[19] Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh
Hajishirzi, Sameer Singh, and Roy Fox. Do embodied agents dream of pixelated
sheep: Embodied decision making using language guided world modelling, 2023.

[20] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie
Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman,

60

Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen,
Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry,
Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fe-
dus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo
Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan
Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han,
Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, An-
gela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn,
Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitschei-
der, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight,
Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly
Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McK-
inney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok
Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk,
David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakan-
tan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pa-
chocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascan-
dolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde
de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Rad-
ford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rim-
bach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr,
John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jor-
dan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie
Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Eliz-
abeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón
Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Wein-

61

mann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin
Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin
Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and
Barret Zoph. Gpt-4 technical report, 2024.

[21] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H. Miller, and Sebastian Riedel. Language models as knowledge
bases?, 2019.

[22] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,
a distilled version of bert: smaller, faster, cheaper and lighter, 2020.

[23] Lorenzo Servadei, Edoardo Mosca, Michael Werner, Volkan Esen, Robert Wille,
and Wolfgang Ecker. Combining evolutionary algorithms and deep learning for
hardware/software interface optimization. In 2019 ACM/IEEE 1st Workshop on
Machine Learning for CAD (MLCAD), pages 1–6, 2019.

[24] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem
Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open
foundation and fine-tuned chat models, 2023.

[25] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung
Lee, and Song Han. Gcn-rl circuit designer: Transferable transistor sizing with
graph neural networks and reinforcement learning, 2020.

[26] Hanrui Wang, Jiacheng Yang, Hae-Seung Lee, and Song Han. Learning to design
circuits, 2020.

[27] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William
Fedus. Emergent abilities of large language models, 2022.

62

[28] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits
reasoning in large language models, 2023.

[29] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny
Zhou, and Xinyun Chen. Large language models as optimizers, 2024.

[30] Wei Ye, Mohamed Baker Alawieh, Yibo Lin, and David Z. Pan. Lithogan: End-
to-end lithography modeling with generative adversarial networks. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2019.

[31] Guo Zhang, Hao He, and Dina Katabi. Circuit-GNN: Graph neural networks for
distributed circuit design. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pages 7364–7373.
PMLR, 09–15 Jun 2019.

[32] Zhuangdi Zhu, Kaixiang Lin, Anil K. Jain, and Jiayu Zhou. Transfer learning in
deep reinforcement learning: A survey, 2023.

63

	Introduction
	Motivation
	Thesis Overview
	Analog Integrated Circuit Design
	Large Language Models
	Reinforcement Learning

	Related Work
	Automated Chip Design
	LLMs for engineering design
	LLMs for guiding RL algorithms

	Capability of LLMs in Analog Integrated Circuit Design
	LLMs for General Circuit Knowledge
	LLMs for Circuit Calculations
	LLMs for Netlist Comprehension

	Using LLMs to Improve Circuit Optimization
	LLM as an Optimizer
	Implementation

	LLM as Guidance to a Mathematical Optimizer
	Goals
	Implementation
	Implementation Discussion
	Evaluation

	Improving RL exploration with LLMs
	Implementation
	Results

	Conclusion
	Appendix
	Truncated Netlists Given to LLM
	Two Stage Transimpedance Amplifier
	Three Stage Diff Trans Amplifier
	Two-Stage Voltage Amplifier

